a.
Jumlah Pengaduk
Jumlah
Pengaduk =
Dimana,
WELH = water equivalent liguid high = ZL.sg
ID = diameter dalam reaktor
sg = specific gravity
ZL = tinggi cairan dalam shell
=
Sg =
WELH = ZL.sg =
Jumlah Pengaduk =
b.
Kecepatan
Pengaduk
Perhitungan
Kecepatan Pengaduk Dipilih berdasarkan, Rase, H.F., dan J.R., Holmes, Chemical
Reactor Design for Process Plants, Willey and Son, New York, 1977, vol.1,
halaman 366. Kecepatan putar berkisar antara 500 ft/menit sampai 700 ft/menit,
dengan tipe pengaduk propeller dan flat blade turbine impeller dengan 6 flate
blade.
Dipilih: 500
ft/menit
N = 500
ft/menit x [0,3048 m/ft] = 152,4 m/menit
N =
Sehingga,
digunakan kecepatan pengadukan 56 rpm = 0,93rps
c.
Menghitung
bilangan Reynold
Dimana,
ρ = densitas campuran =
N = kecepatan pengadukan (rpm) = 0,93 rps
Da = diameter impeller =
µ = viskositas campuran = 18,01 Cp
= 0,018 kg/m.s
Maka:
Dari gambar 8.8 (Rase, 1957), untuk six blade
turbine dengan NRe > 105, maka nilai Np = 5
d. Menghitung Tenaga Pengaduk
Dihitung dengan persamaan:
Po = Np x ρ x N3
x Da5 (Mc
Cabe hal 253 pers 9.20)
Keterangan:
Po =
Daya penggerak (watt)
Np =
Bilangan daya
ρ = Rapat massa fluida yang diaduk (kg/m3)
N =
Kecepatan pengaduk (s-1)
Di =
Diameter pengaduk (m)
Maka:
Pa
=
Efisiensi motor pengaduk, diperoleh dari tabel 3.1
Towler, halaman 111:
Size (kW) |
Efisiensi (%) |
5 |
80 |
15 |
85 |
75 |
90 |
200 |
92 |
750 |
95 |
>4000 |
97 |
Diperoleh effisiensi = 80%, maka daya penggerak motor pengaduk yang diperlukan:
Daya =
Digunakan motor pengaduk standar, diperoleh dari
Ludwig, E.F., Applied Process design for Chemical and Petrochemical Plants,
Gulf, Publishing, Co. Houston, Texas, 2001, edisi 3, halaman 628:
Sehingga,
dipilih motor pengaduk standar yaitu 7
½ HP.
NERACA
PANAS REAKTOR
ΔHTotal 100 oC 100 oC
25 oC 25 oC ΔHf ΔHR ΔHP
Tinput = 100 oC
Tabel 8. Harga Hf
dan Cp masing-masing komponen
Komponen |
H0f
(kJ/mol) |
Cp (J/mol.K) |
C6H5CH5CL |
18,70 |
82,217 + 7,0948E-01 T – 1,7551E-03 T2 +
1,8744E-06 T3 |
NaCN |
-87,50 |
69,098 + 3,8057E-02 T
– 4,1570E-05 T2 + 1,3876E-08 T3 |
C6H5CH5CN |
117,28 |
87,722 + 7,6976E-01 T
– 1,6788E-03 T2 + 1,5257E-6 T3 |
NaCl |
-411,20 |
95,016 – 3,1081E-02 T
+ 9,6789E-07 T2 + 5,5116E-09
T3 |
H2O |
–241,800 |
92,053
– 3,9953.10-2 T – 2,1103.10-4 T2 + 5,3469.10-7
T3 |
Reaktor
1
Tabel 9. Komponen Masuk
dan Keluar Reaktor 1
Komponen |
Masuk kmol/jam |
Keluar kmol/jam |
C6H5CH5CL |
67,390 |
14,852 |
NaCN |
67,390 |
14,852 |
C6H5CH5CN |
0,646 |
53,183 |
NaCl |
0,00 |
52,537 |
H2O |
373,530 |
373,530 |
a.
Panas
Reaktan (∆HR)
T1 = 100 oC
= 373
K
T2 = 25 oC = 298 K
∆HR = ∑ n.Cp. dT
=
(-978.200.581,4) + (-392.706.986) + (-10.401.996,87) + (-2.107.848.235)
= -3.494.504.516 Joule/jam
b.
Panas
Reaksi Standar
Reaksi yang terjadi :
∆H1 =
=
=(-14.515,4589)+(-5.827,3550)+(-16.091,977)+(-9.127,9300)+(-5.643,0403)
= -51.205,7335 J/mol
∆H2 =
=14.515,4589+5.827,3550+16.091,977+9.127,930+5.643,040
=-51.205,7335 J/mol
∆H0R = Hf 0Produk – Hf
0Reaktan
=
[(1 × C6H5CH5CN) + (1 × NaCl
)] − [(1 × C6H5CH5CL) + (1 × NaCN)]
=
((117,28 kJ/mol) + (-411,2 kJ/mol)) – ((-87,5 kJ/mol) + (18,7 kJ/mol))
=
-225,12
kJ/mol
=
-225.120 J/mol
∆Hreaksi
= ∆H1+∆H2+∆H0R
= -51.205,7335
+ 51.205,7335 -225.120) J/mol
= -225.120 J/mol
Panas Reaksi = ∆Hreaksi. nA0.XA
=
-225.120 J/mol×67.390,26mol/jam×77,96 %
=
-11.827.230.000 J/jam
c.
Panas
Produk (∆HP)
T1 = 25 oC = 298 K
T2 = 140 oC
= 373
K
∆HP = ∑ n.Cp. dT
=215.595.408,7+ 86.552.619,67+ 855.833.417,1+ 479.558.157,8+ 2.107.848.235
= 3.745.387.838 Joule/jam
d.
Neraca
Panas Di Reaktor 1
QS =∆HR
+ Panas Reaksi + ∆HP
=( -3.494.504.516 -11.827.230.000 +3.745.387.838)Joule/jam
=
Reaktor
2
Tabel 10. Komponen
Masuk dan Keluar Reaktor 2
Komponen |
Masuk kmol/jam |
Keluar kmol/jam |
C6H5CH5CL |
14,852 |
6,073 |
NaCN |
14,852 |
6,073 |
C6H5CH5CN |
53,183 |
61,317 |
NaCl |
52,537 |
61,963 |
H2O |
373,530 |
373,5306 |
a.
Panas
Reaktan (∆HR)
T1 = 140 oC
= 373 K
T2 = 25 oC = 298 K
∆HR = ∑ n.Cp. dT
=(-215.595.408,7)+(-86.552.619,67)+(-855.833.417,1)+(- 479.558.157,8)+( -2.107.848.235)
= -3.750.734.552Joule/jam
b.
Panas Reaksi Standar
Reaksi yang terjadi :
∆H1 =
=
=(-14.515,4589)+(-5.827,3550)+(-16.091,977)+(-9.127,9300)+(-5.643,0403
= -51.205 J/mol
∆H2 =
=14.515,4589+5.827,3550+16.091,977+9.127,930+5.643,040
=51.205 J/mol
∆H0R = Hf 0Produk – Hf
0Reaktan
=
[(1 × C6H5CH5CN) + (1 × NaCl
)] − [(1 × C6H5CH5CL) + (1 × NaCN)]
=
((117,28 kJ/mol) + (-411,2 kJ/mol)) – ((-87,5 kJ/mol) + (18,7 kJ/mol))
=
-225,12
kJ/mol
=
-225.120 J/mol
∆Hreaksi
= ∆H1+∆H2+∆H0R
= (-51.205
+ 51.205 -225.120) J/mol
= -225.120 J/mol
Panas Reaksi = ∆Hreaksi. nA0.XA
=
−225.120J/mol×14,852,81 mol/jam×90,98 %
= -3.042.066.826
J/jam
c.
Panas
Produk (∆HP)
T1 = 25 oC = 298 K
T2 = 100 oC
= 373 K
∆HP = ∑ n.Cp. dT
= 86.238.163,49+ 34.621.047,83+ 999.240.101,3+
560.903.425,6+ 2.107.848.235
= 3.794.197.687Joule/jam
d.
Neraca
Panas Di Reaktor 2
QS =∆HR
+ Panas Reaksi + ∆HP
=(-3.750.734.552)+ (-3.042.066.826) + 3.794.197.687) =
−2.998.603.691Joule/jam
=
−2.998.603,691 kJ/jam
Reaktor
3
Tabel 11. Komponen
Masuk dan Keluar Reaktor 2
Komponen |
Masuk kmol/jam |
Keluar kmol/jam |
C6H5CH5CL |
6,073 |
3,3694 |
NaCN |
6,073 |
3,3694 |
C6H5CH5CN |
61,963 |
64,6671 |
NaCl |
61,317 |
64,0207 |
H2O |
373,5306 |
373,5306 |
a.
Panas
Reaktan (∆HR)
T1 = 100 oC
= 373 K
T2 = 25 oC = 298 K
∆HR = ∑ n.Cp. dT
=(-86.238.163,49)+(-34.621.047,83)+(-999.240.101,3)+(- 560.903.425,6)+( -2.107.848.235)
= -3.794.197.687 Joule/jam
b.
Panas
Reaksi Standar
Reaksi yang terjadi :
∆H1 =
=
=(-14.515,4589)+(-5.827,3550)+(-16.091,977)+(-9.127,9300)+(-5.643,0403)
= -51.205 J/mol
∆H2 =
=14.515,4589+5.827,3550+16.091,977+9.127,930+5.643,040
=51.205 J/mol
∆H0R = Hf 0Produk – Hf
0Reaktan
=
[(1 × C6H5CH5CN) + (1 × NaCl
)] − [(1 × C6H5CH5CL) + (1 × NaCN)]
=
((117,28 kJ/mol) + (-411,2 kJ/mol)) – ((-87,5 kJ/mol) + (18,7 kJ/mol))
=
-225,12
kJ/mol
=
-225.120 J/mol
∆Hreaksi
= ∆H1+∆H2+∆H0R
= (-74756,6636
+ 74.756,6636 -225.120) J/mol
= -225.120 J/mol
Panas Reaksi = ∆Hreaksi. nA0.XA
=
−225.120J/mol×5,9411 mol/jam×95 %
= -1.270.592.871 J/jam
c.
Panas
Produk (∆HP)
T1 = 25 oC = 298 K
T2 = 140 oC
= 373 K
∆HP = ∑ n.Cp. dT
= 48.909.543,23+ 19.635.154,15+ 1.040.622.968+
560.903.425,6+ 584.377.229,5
= 3.806.739.844 Joule/jam
d.
Neraca
Panas Di Reaktor 3
QS =∆HR
+ Panas Reaksi + ∆HP
=
(-3.794.197.687)+ (-1.270.592.871) + 3.806.739.844 = −1.258.050.714 Joule/jam
=
−1.258.050,714 kJ/jam
Tidak ada komentar:
Posting Komentar