Selasa, 23 Maret 2021

reaktorr

 

 

a.    Jumlah Pengaduk

Jumlah Pengaduk          =            

Dimana,

WELH   = water equivalent liguid high = ZL.sg

ID          = diameter dalam reaktor

sg           = specific gravity

ZL              = tinggi cairan dalam shell = meter                    

Sg          =

WELH   = ZL.sg = x  = 2,87 m

Jumlah Pengaduk = ≈ 1 buah pengaduk

b.    Kecepatan Pengaduk

Perhitungan Kecepatan Pengaduk Dipilih berdasarkan, Rase, H.F., dan J.R., Holmes, Chemical Reactor Design for Process Plants, Willey and Son, New York, 1977, vol.1, halaman 366. Kecepatan putar berkisar antara 500 ft/menit sampai 700 ft/menit, dengan tipe pengaduk propeller dan flat blade turbine impeller dengan 6 flate blade.

   Dipilih: 500 ft/menit

   N = 500 ft/menit x [0,3048 m/ft] = 152,4 m/menit

   N =  = 0,82 rps

   Dari Wallas, halaman 288 untuk kecepatan pengaduk standar:

 

 

 

 

   Sehingga, digunakan kecepatan pengadukan 56 rpm = 0,93rps

 

c.       Menghitung bilangan Reynold             

    

Dimana,

ρ          = densitas campuran                           =  kg/m3

N         = kecepatan pengadukan (rpm)           = 0,93 rps

Da       = diameter impeller                             =  m

µ          = viskositas campuran                         = 18,01 Cp

= 0,018 kg/m.s

            Maka:

Dari gambar 8.8 (Rase, 1957), untuk six blade turbine dengan NRe > 105, maka nilai Np = 5

 

d.    Menghitung Tenaga Pengaduk

Dihitung dengan persamaan:    

Po = Np x ρ x N3 x Da5                                     (Mc Cabe hal 253 pers 9.20)

                          

Keterangan:

Po          = Daya penggerak (watt)

Np          = Bilangan daya 

ρ             = Rapat massa fluida yang diaduk (kg/m3)

N            = Kecepatan pengaduk (s-1)

Di           = Diameter pengaduk (m)

 

Maka:

Pa

      =

 

Efisiensi motor pengaduk, diperoleh dari tabel 3.1 Towler, halaman 111:

Size (kW)

Efisiensi (%)

5

80

15

85

75

90

200

92

750

95

>4000

97

 

 

Diperoleh effisiensi = 80%, maka daya penggerak motor pengaduk yang diperlukan:

Daya      =  = 6,7HP

 

Digunakan motor pengaduk standar, diperoleh dari Ludwig, E.F., Applied Process design for Chemical and Petrochemical Plants, Gulf, Publishing, Co. Houston, Texas, 2001, edisi 3, halaman 628:

 

 

 

 

 

 

Sehingga, dipilih motor pengaduk standar yaitu 7 ½ HP.

 

 

 

NERACA PANAS REAKTOR

ΔHTotal

 

100 oC

 

100 oC

 

 

 


25 oC

 

25 oC

 

ΔHf

 

ΔHR

 

ΔHP

 

           

Tinput = 100 oC

 

Tabel 8. Harga Hf dan Cp masing-masing komponen

Komponen

H0f (kJ/mol)

Cp

(J/mol.K)

C6H5CH5CL

18,70

82,217 + 7,0948E-01 T – 1,7551E-03 T2 + 1,8744E-06 T3

NaCN

-87,50

69,098 + 3,8057E-02 T – 4,1570E-05 T2 + 1,3876E-08 T3

C6H5CH5CN

117,28

87,722 + 7,6976E-01 T – 1,6788E-03 T2 + 1,5257E-6 T3

NaCl

-411,20

95,016 – 3,1081E-02 T + 9,6789E-07 T2 + 5,5116E-09 T3

H2O

–241,800

92,053 – 3,9953.10-2 T – 2,1103.10-4 T2 + 5,3469.10-7 T3

 

 

 

 

 

 

Reaktor 1

Tabel 9. Komponen Masuk dan Keluar Reaktor 1

Komponen

Masuk

kmol/jam

Keluar

kmol/jam

C6H5CH5CL

67,390

14,852

NaCN

67,390

14,852

C6H5CH5CN

0,646

53,183

NaCl

0,00

52,537

H2O

373,530

373,530


a.    Panas Reaktan (∆HR)

T1 = 100 oC = 373 K

T2 = 25 oC = 298 K

 

∆HR       = ∑ n.Cp. dT

              

           

= (-978.200.581,4) + (-392.706.986) + (-10.401.996,87) + (-2.107.848.235)

                        = -3.494.504.516 Joule/jam

 

b.   Panas Reaksi Standar

Reaksi yang terjadi :

 C6H5CH5CL(l) + NaCN (l)  C6H5CH5CN (l) + NaCl (l)

∆H1       =

            =

            =(-14.515,4589)+(-5.827,3550)+(-16.091,977)+(-9.127,9300)+(-5.643,0403)

= -51.205,7335 J/mol

∆H2       =

           

=14.515,4589+5.827,3550+16.091,977+9.127,930+5.643,040

=-51.205,7335 J/mol

∆H0R      = Hf 0Produk – Hf 0Reaktan

= [(1 × C6H5CH5CN) + (1 × NaCl )] − [(1 × C6H5CH5CL) + (1 × NaCN)]

= ((117,28 kJ/mol) + (-411,2 kJ/mol)) – ((-87,5 kJ/mol) + (18,7 kJ/mol))

= -225,12 kJ/mol

= -225.120 J/mol

∆Hreaksi = ∆H1+∆H2+∆H0R

                   = -51.205,7335 + 51.205,7335 -225.120) J/mol

                        = -225.120 J/mol

Panas Reaksi = ∆Hreaksi. nA0.XA

                                   = -225.120 J/mol×67.390,26mol/jam×77,96 %

                           = -11.827.230.000 J/jam

 

c.    Panas Produk (∆HP)

T1 = 25 oC = 298 K

T2 = 140 oC = 373 K

 

∆HP        = ∑ n.Cp. dT

              

                     

=215.595.408,7+ 86.552.619,67+ 855.833.417,1+ 479.558.157,8+ 2.107.848.235

                        = 3.745.387.838 Joule/jam

 

 

d.   Neraca Panas Di Reaktor 1

QS          =∆HR + Panas Reaksi + ∆HP

               =( -3.494.504.516 -11.827.230.000  +3.745.387.838)Joule/jam

               = Kjoule/jam


 

Reaktor 2

Tabel 10. Komponen Masuk dan Keluar Reaktor 2

Komponen

Masuk

kmol/jam

Keluar

kmol/jam

C6H5CH5CL

14,852

6,073

NaCN

14,852

6,073

C6H5CH5CN

53,183

61,317

NaCl

52,537

61,963

H2O

373,530

373,5306

 

 

 

 

 

 

 

 

 

 

 

 

a.    Panas Reaktan (∆HR)

T1 = 140 oC = 373 K

T2 = 25 oC = 298 K

 

∆HR       = ∑ n.Cp. dT

              

              

=(-215.595.408,7)+(-86.552.619,67)+(-855.833.417,1)+(- 479.558.157,8)+( -2.107.848.235)

                        = -3.750.734.552Joule/jam

 

 

 

 

b.       Panas Reaksi Standar

Reaksi yang terjadi :

 C6H5CH5CL(l) + NaCN (l)  C6H5CH5CN (l) + NaCl (l)

∆H1       =

            =

            =(-14.515,4589)+(-5.827,3550)+(-16.091,977)+(-9.127,9300)+(-5.643,0403

= -51.205 J/mol

∆H2       =

         

=14.515,4589+5.827,3550+16.091,977+9.127,930+5.643,040

=51.205 J/mol

∆H0R      = Hf 0Produk – Hf 0Reaktan

= [(1 × C6H5CH5CN) + (1 × NaCl )] − [(1 × C6H5CH5CL) + (1 × NaCN)]

= ((117,28 kJ/mol) + (-411,2 kJ/mol)) – ((-87,5 kJ/mol) + (18,7 kJ/mol))

= -225,12 kJ/mol

= -225.120 J/mol

∆Hreaksi = ∆H1+∆H2+∆H0R

                   = (-51.205 + 51.205 -225.120) J/mol

                        = -225.120 J/mol

Panas Reaksi = ∆Hreaksi. nA0.XA

                                   = −225.120J/mol×14,852,81 mol/jam×90,98 %

                           = -3.042.066.826 J/jam

 

c.       Panas Produk (∆HP)

T1 = 25 oC = 298 K

T2 = 100 oC = 373 K

 

∆HP        = ∑ n.Cp. dT

              

              

= 86.238.163,49+ 34.621.047,83+ 999.240.101,3+ 560.903.425,6+ 2.107.848.235

               = 3.794.197.687Joule/jam

 

d.      Neraca Panas Di Reaktor 2

QS          =∆HR + Panas Reaksi + ∆HP

               =(-3.750.734.552)+ (-3.042.066.826) + 3.794.197.687)                                            = −2.998.603.691Joule/jam

               = −2.998.603,691 kJ/jam

 

 

 

 


Reaktor 3

Tabel 11. Komponen Masuk dan Keluar Reaktor 2

Komponen

Masuk

kmol/jam

Keluar

kmol/jam

C6H5CH5CL

6,073

3,3694

NaCN

6,073

3,3694

C6H5CH5CN

61,963

64,6671

NaCl

61,317

64,0207

H2O

373,5306

373,5306

 

 

 

 

 

 

 

 

 

 

 

 

a.      Panas Reaktan (∆HR)

T1 = 100 oC = 373 K

T2 = 25 oC = 298 K

 

∆HR       = ∑ n.Cp. dT

              

              

=(-86.238.163,49)+(-34.621.047,83)+(-999.240.101,3)+(- 560.903.425,6)+( -2.107.848.235)

                        = -3.794.197.687 Joule/jam

 

 

 

 

b.   Panas Reaksi Standar

Reaksi yang terjadi :

 C6H5CH5CL(l) + NaCN (l)  C6H5CH5CN (l) + NaCl (l)

∆H1       =

            =

            =(-14.515,4589)+(-5.827,3550)+(-16.091,977)+(-9.127,9300)+(-5.643,0403)

= -51.205 J/mol

∆H2       =

=14.515,4589+5.827,3550+16.091,977+9.127,930+5.643,040

=51.205 J/mol

∆H0R      = Hf 0Produk – Hf 0Reaktan

= [(1 × C6H5CH5CN) + (1 × NaCl )] − [(1 × C6H5CH5CL) + (1 × NaCN)]

= ((117,28 kJ/mol) + (-411,2 kJ/mol)) – ((-87,5 kJ/mol) + (18,7 kJ/mol))

= -225,12 kJ/mol

= -225.120 J/mol

∆Hreaksi = ∆H1+∆H2+∆H0R

                   = (-74756,6636 + 74.756,6636 -225.120) J/mol

                        = -225.120 J/mol

Panas Reaksi = ∆Hreaksi. nA0.XA

                                   = −225.120J/mol×5,9411 mol/jam×95 %

                           = -1.270.592.871 J/jam

 

 

c.    Panas Produk (∆HP)

T1 = 25 oC = 298 K

T2 = 140 oC = 373 K

 

∆HP        = ∑ n.Cp. dT

              

              

= 48.909.543,23+ 19.635.154,15+ 1.040.622.968+ 560.903.425,6+ 584.377.229,5

               = 3.806.739.844 Joule/jam

 

d.      Neraca Panas Di Reaktor 3

QS          =∆HR + Panas Reaksi + ∆HP

               = (-3.794.197.687)+ (-1.270.592.871) + 3.806.739.844                                            = −1.258.050.714 Joule/jam

               = −1.258.050,714  kJ/jam

 

 

 

 

 

 

 

 

 

 

Tidak ada komentar:

Posting Komentar